Chemistry 101 Laboratory Fall 2005-06

Lecture 7
Ideal Gas law

Determination of n of CO_{2}

Purpose

- Understand the principles of the Ideal Gas Law.
- Measure the amount (n) of CO_{2} gas generated in a chemical reaction by mixing baking soda $\left(\mathrm{NaHCO}_{3}\right)$ and HCl in a flask.

Ideal Gas Equation

Boyle's law: $\mathrm{V} \alpha \frac{1}{P}$ (at constant n and T)
Charles' law: $V \alpha T$ (at constant n and P)
Avogadro's law: $\mathrm{V} \alpha n$ (at constant P and T)
$V \alpha \frac{n T}{P}$
$V=$ constant $\mathrm{x} \frac{n T}{P}=R \frac{n T}{P}$
R is the gas constant

$$
P V=n R T
$$

What is the volume (in liters) occupied by 49.8 g of HCl at STP?

$$
\begin{aligned}
& T=0^{\circ} \mathrm{C}=273.15 \mathrm{~K} \\
& P=1 \mathrm{~atm}
\end{aligned}
$$

$$
\begin{aligned}
P V & =n R T \\
V & =\frac{n R T}{P}
\end{aligned}
$$

$$
n=49.8 \mathrm{~g} \times \frac{1 \mathrm{~mol} \mathrm{HCl}}{36.45 \mathrm{~g} \mathrm{HCl}}=1.37 \mathrm{~mol}
$$

$$
V=\frac{1.37 \text { mot } \times 0.0821 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\text { mot } \mathrm{K}} \times 273.15 \mathrm{~K}}{1 \mathrm{~atm}}
$$

$V=30.6 \mathrm{~L}$
0.6673 g sample of NaHCO_{3} is allowed to react with excess HCl to produce 578 mL of CO_{2} gas at 251.0 torr and $23.5^{\circ} \mathrm{C}$.
a- Calculate the experimental number of moles of CO_{2} produced.
$P=251.0$ torr $/ 760$ torr/atm $=0.3303$ atm.
$T=23.5^{\circ} \mathrm{C}+273 \mathrm{~K}=296.5 \mathrm{~K}$
$V=0.578 L$
$P V=n R T$
$n=\frac{P V}{R T}=\frac{(0.3303 \mathrm{~atm})(0.578 \mathrm{~L})}{\left(0.0821 \mathrm{~L} . \mathrm{atm} \cdot \mathrm{mol}^{-1} \mathrm{~K}^{-1}\right)(296 \mathrm{~K})}$
$n=7.86 \times 10^{-3} \mathrm{~mol}$
b- Calculate the theoretical number of moles of CO_{2} produced.
$\mathrm{NaHCO}_{3}+\mathrm{HCl} \longrightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
n of $\mathrm{NaHCO}_{3}=0.6673 \mathrm{~g} / 84.02 \mathrm{~g} / \mathrm{mol}$
$=7.942 \times 10^{-3} \mathrm{~mol}$
n of $\mathrm{CO}_{2}=\mathrm{n}$ of NaHCO_{3} (from stoichiometry)
n of $\mathrm{CO}_{2}=7.942 \times 10^{-3} \mathrm{~mol}$

Experimental Procedure (Main Steps)

- Weigh using the analytical balance about 0.65 g of sodium bicarbonate (limiting reagent) and transfer quantitatively to an Erlenmeyer flask.
- Measure 5 mL of 6.0 M HCl (excess reagent) in a graduated cylinder and empty it in a small test tube.
- Tilt the Erlenmeyer flask and carefully slide the small test tube down inside so that no HCl is spilled inside the flask.
- Place the rubber stopper followed by the sensors in the Erlenmeyer flask and make sure it is secure.

Experimental Procedure (Cont'd)

- Click the 'start' button to begin collecting data
- While holding the rubber stopper, slowly rotate the flask until the HCl empties out.
- Try to hold the stopper in place without putting your hands on the flask.
- Determine the volume of the reaction assembly. Account for the volume occupied by the test tube, the rubber stopper and the sensors.
- By means of a graduated cylinder measure and record the volume of water contained in the flask. (Hint: subtract the volume of HCl used from the total volume)

Report

- Complete the report form and show your calculations.
- Include a print out of your graphs.
- Answer the questions.

